Algebra II 11-5
 Sums of Arithmetic and Geometric Series

Sum of a Finite Arithmetic Series:

$$
S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}
$$

Find the sum of each arithmetic series.

$$
\begin{aligned}
& \underbrace{1+2+3+4+5+\ldots+99+100}_{101} \\
& a_{1}^{2+3}=1 \\
& S_{100}=\frac{100(1+100)}{2}=\frac{100(101)}{2}=5050
\end{aligned}
$$

Sum of a Finite Geometric Series :

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Find the sum of each geometric series.

$$
\stackrel{2}{+4 \stackrel{.2}{+}+8+16+\ldots+1024}
$$

geometric: $r=2$

$$
a_{n}=a_{1} r^{n-1}
$$

$$
1024=2(2)^{n-1}
$$

$$
512=2^{n-1}
$$

$$
2^{9}=2^{n-1}
$$

$$
n=10
$$

$$
\begin{aligned}
S_{10} & =\frac{2\left(1-2^{10}\right)}{1-2} \\
& =\frac{2(1-1024)}{-1} \\
& =\frac{2(-1023)}{-1} \\
& =2046
\end{aligned}
$$

Find the sum of each arithmetic series.

1) $n=20 ; a_{1}=5 ; a_{20}=62$

$$
\begin{aligned}
S_{20} & =\frac{n\left(a_{1}+a_{n}\right)}{2} \\
& =\frac{20(5+62)}{2} \\
& =10(67)=670
\end{aligned}
$$

Find the sum of each arithmetic series.

$$
\text { 7) } \begin{aligned}
\sum_{j=1}^{50} 3 j+2 & =5+8+11+\cdots+152 \\
S_{50} & =\frac{50(5+152)}{2} \\
& =25(157) \\
& =3925
\end{aligned}
$$

Find the sum of each geometric series.

$$
\text { 17) } \sum_{k=1}^{12}=\frac{2^{-k}}{2}+2^{-2}+\cdots+2^{-12}+\cdots+\frac{1}{2^{12}}
$$

$$
\begin{aligned}
S_{n} & =\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& =\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{12}\right)}{1-\frac{1}{2}}=\frac{\frac{1}{2}\left(1-\frac{1}{4096}\right)}{\frac{1}{2}} \\
& =\frac{4095}{4096}
\end{aligned}
$$

Find the sum of the following.
21) The first 20 positive integers ending in 3

$$
\begin{array}{rlr}
3+13+23+\cdots \\
\sqrt{ } & a_{20} & =a_{1}+d(n-1) \\
S_{20} & =\frac{20(3+193)}{2} & \begin{aligned}
a_{20} & =3+10(20-1) \\
& =3+10(19) \\
& =193
\end{aligned} \\
& =19(196)
\end{array}
$$

